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ABSTRACT

The feasibility of using slot injection to establish a turbulent bound-

ary layer corresponding to a known Reynolds number is investigated here ex-

perimentally. The basic concept proposed by Professor A. Ferri consists of

injecting secondary air through a slot. The air is injected at the same local

static pressure and at a selected stagnation temperature to simulate a given up-

stream heat conduction condition. The mass of the injected air can be con-

trolled to match a desired Reynolds number. In the present experiment, sec-

ondary air was injected through a supersonic nozzle over a flat plate model.

The outer stream Mach number at the slot location ( 1 inch behind the lead-

ing edge) was in the range of 5.43 - 5.83, and the Reynolds number R basedex
on the streamwise distance was varied between 4 x 10 5 to 2 x 105 per inch.

Tests were conducted with different injection air conditions, with values of

Re and x= Ue) in the range of 0 - 1500 and 0 - 0.172 respectively.

Heat transfer rates were measured at about 4 to 8 inches (54 . 108 slot

heights)behind the slot and the results were compared with theoretical es-

timates. Static pressure measurements were made over the surface in the

streamwise direction. Velocity and Mach number profiles were determined at

a position 7 inches ( 95 slot heights) downstream of the slot. Laminar and

turbulent profiles were calculated from the Crocco method and 1/7 power law

respectively to compare with the results of measurements. The experimental

results obtained indicate that this method is effective in establishing a

turbulent boundary layer having a prescribed value of Ree.
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NOMENCLATURE

c Specific heat of wall material

C Specific heat at constant pressure

d Wall thickness of the model

h Injection nozzle height

M Mach number

p Pressure

Pr Prandtl number

BTq Heat transfer rate [ BTU ]
ft sec

Re Px-ee , Reynolds number based on the streamwise coordinate xee

Pee

R ee , Reynolds number based on the momentum thickness g
ee Ce

T Temperature

t Time

u Flow velocity in the streamwise direction

x Streamwise coordinate

y Coordinate normal to the model surface

8 Boundary layer thickness

g Momentum thickness

, Mass flow rate parameter
0 eU

Viscosity

Density
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X .ex , Viscous interaction parameter

Subscripts

aw Adiabatic wall conditions

e Outer flow conditions, edge of the boundary layer

j Injection air

t Local stagnation conditions

w Conditions at the wall

a Free stream conditions

oj Stagnation conditions of injection air

ow Stagnation conditions of free stream

Superscripts

* Conditions at reference enthalpy (or temperature)
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I. INTRODUCTION

One of the most difficult experimental problems to be solved in

transonic, supersonic and hypersonic aerodynamics is the correct simulation

of the boundary layer and inviscid flow interaction. Specially in transonic

and hypersonic tests the available Reynolds number is much smaller than in

full scale. Therefore, the correct simulation is not possible. Usually

the transition from laminar to turbulent flow is induced by tripping the

boundary layer by means of local roughness. However, this approach is some-

what arbitrary, because it does not permit the determination of the actual

Reynolds number of the boundary layer. This effectiveness changes with local

conditions and is different at different angles of attack, and this rough-

ness often affects the flow outside the boundary layer,

A different method for boundary layer tripping that gives better

controlled simulation has been proposed by Professor A. Ferri. The scheme

consists of injecting secondary air flow tangentially through a backward

facing slot near a leading edge. Experiments with slot injection (Refs. 1,

2, 3, 4, and 5) indicate that the mixing between the injected air and the

boundary layer is rapid and even at sufficiently low Reynolds number the

flow is turbulent; at a small distance downstream of the slot the profile

becomes a classical turbulent boundary layer profile. Because the mass

injected through a slot can be controlled, the value of Re of the boundary

layer can be changed without changing the wind tunnel Reynolds number. In

addition, Reg can be correctly evaluated from available information on slot

cooling. The basic idea of this method is shown schematically in Fig. 1.
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To investigate experimentally the above concept, experiments have been

conducted at Mach 6 on a flat plate model having slot injection near the

leading edge. The investigation has been directed to give specific infor-

mationsthat could be used in a study of a hypersonic inlet to be tested at

Mach 6. Heat transfer rates, static pressure distributions over the surface

and profiles have been obtained for several values of Ree ranging from 0

(the nominal Re8 at the injection slot corresponds to the case of zero in-

jection) to 1500.

The experiments indicate that a turbulent boundary layer can be in-

duced at low free stream Reynolds number with this method and that Ree can

be controlled by adjusting the mass flow injected through the slot.

II. APPARATUS AND TEST CONDITIONS

1. Wind Tunnel

The present experiments were conducted in a Mach 6 blowdown type axisy-

mmetric wind tunnel (12 inches in diameter) at the New York University Aero-

space Laboratory. A more complete description of this facility is presented

in Ref. 5.

2. Model

The model used in the present experiments is a flat plate having sharp

leading edge and a span of 6 inches, and the plate was supported horizon-

tally from the downstream side of the tunnel. The model configuration is

shown in Fig. 2, and the details of the injection nozzle are shown in Fig. 3.

The splitter plate thickness is 0.02 inches. In the present experiments a

supersonic nozzle has been used, because a supersonic injection flow re-

quires a smaller slot height for the conditions required. A subsonic
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injection flow is preferable when local small pressure perturba-

tions due to injection must be avoided. All the dimensions of the nozzle

are determined so as to give sufficient large range of Re (1500 - 2000, for

injection cases) to establish the required turbulent flow. The design Mach

number of the slot nozzle, Mj, has been selected equal to 2.06. The Reynolds

number based on the momentum thickness, Ree , ranged from 730 to 1500 (for

injection cases), whereas the Mach number- (Mj) varied from 1.60 to 1.94. An

air supply pipe was heated by a 3-kw heater outside the tunnel to obtain hot

injection air having approximately the same total temperature as the total

temperature of free stream, since it was desired in this test to produce

only the momentum defect while keeping the total enthalpy profile unchanged.

The spanwise uniformity of the injected air distribution was measured at

the beginning of the test series.

3. Instrumentations

Two types of measurements were performed. Heat transfer and static

pressure distributions along the surface were determined. The boundary

layer profiles were measured at a station 7 inches downstream of the slot

by means of a traversing probe.

The model was instrumented with pressure taps and chromel-alumel ther-

mocouples welded on a stainless steel shimstock of 0.01 inch thickness. All

the thermocouples were calibrated beforehand to ensure accurate temperature

readings. A scani-valve was used to obtain the static pressure distribu-

tion over the model surface. The locations of these pressure taps and

thermocouples are shown in Fig. 2 and Fig. 3. A probe that determines the
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stagnation temperature, the total and static pressure was used for the

measurement of profiles.

4. Test Conditions

The tests were performed at two different free stream conditions, with

several values of injection mass flow. Actual test conditions covered in

this experimental work are summarized in Table 1.

III. EXPERIMENTS AND RESULTS

One of the important parameters which determines the state of a bound-

ary layer is the Reynolds number based on the momentum thickness, Ree , de-

fined as:

e (2ee

(1)

where =  O (1 - u ) dy

o PeUe Ue

When the slot flow is uniform, the expression for the momentum thickness

at the slot location can be simplified as (See Fig. 1):

where h is the slot height. From Eqs. (1) and (2), the Reynolds number

based on the momentum thickness, Ree, at the slot location can be expressed

as follows:

R - pu. (1- (3)
e= Pe Ue



where ue and pe refer to the outer stream conditions at the slot location. In

the present tests the slot is located 1 inch downstream of the leading edge.

The flat plate model has been designed corresponding to values of Ree of about

1500-2000. Such values of R are considered sufficient to induce locally a

turbulent boundary layer, and correspond to the following conditions.

Design conditions:

M = 6.0 M W 2.06WD j

T O 9000 R Pe (4)

pow = 200 psi Toj . o

The actual Mach number of the injected air measured during the tests varied

from 1.60 to 1.94. These values are lower than the design value and show

some scattering. This is probably due to the small dimension of the passage

upstream of the slot, and also due to the difficulty in reading very small

values of pressures (pj,p oj) accurately from which M. was computed. The

injected air was heated by means of an electrical heater to a stagnation

temperature approximately equal to the free stream stagnation temperature.

Cold air could be injected to change independently the total enthalpy

profile of the boundary layer and to simulate the effect of wall cooling.

It has been shown (Refs. 1-5) that the mixing between slot injected air

and an external flow is controlled by a parameter X, defined as:

- U

5



In the present experiments, the mass flow rate parameter X was in the range of

0 to 0.172 as shown in Table 1.

The two-dimensionality of the main flow (no tip effects) at the model

centerline was checked experimentally up to x - 9 in. (x/hj = 122). The flat

plate was oriented at zero angle of attack; for these conditions the Mach

number i of the outer stream at the position of the slot was in the range of

5.43 to 5.83 which is slightly lower than the free stream Mach number due to

viscous interactions (X - 0.32 , 0.45, at the slot location). Reynolds numbers

obtained in the Test No. 1-4 were about 4 x 105 1/in. at the slot location,

whereas those of Test No. 5-7 were about 2 x 105 1/in.

Velocity and Mach number profiles were measured at x = 8 in. (x/h.=. 108)

__from the leading edge (i.e. 7 in. from the slot).

To determine the state of the boundary layers, laminar and turbulent

boundary layer velocity and Mach number profiles were calculated for com-

parison with the measured profiles. The Crocco method (Pr = 0.75, Ref. 6)

determines the laminar profile and the boundary layer thickness, 6, completely

for the given conditions. For estimating typical turbulent boundary layer

profiles, the 1/7 power law and the Crocco relation for the temperature field

have been employed, following the next expression.

u = )l /7

e
(6)

T - T
t w = u ; Pr = 1T T uOn - w e

where the boundary layer thickness, 6, was taken from the measured profile as

the point where u/u e = 0.98 for convenience. In the above simple calculations,
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the effect of the slot step was not taken into account.

The heat transfer rate was determined using the transient technique, and

is derived from the slope of the temperature as a function of time by means

of the following expression.

c ( dT(7)
C V-.( dtd) ( )t=O (7

All the heat transfer data were reduced and expressed in terms of q/(T -T ),

were measured values of local wall temperature, Tw, were used at each thermo-

couple location. The heat transfer rates to be expected for laminar and

turbulent boundary layer over the flat plate were calculated, using the flat

plate reference enthalpy method (FPREM, Ref. 7). The heat transfer rates are

given by the following expressions: ( x = 0 was taken at the model leading

edge.)

-2
qW - 0.322 C Pr 3 P U R (Taw- T ); for laminar flow (8)

-2 1
q - 0.0296 C Pr p u R 5 (T - T );p e e aw

5 * 7
for turbulent flow and 5 x 10 < Re < 10 (9)

* U x
where Re- p

(10)

T =0.5 (Te + T ) + 0.22 (Taw - T e)

The laminar heat transfer rates were also calculated, following the theore-

tical work by Cohen and Reshotko (Pr = 1 , Ref. 8). These estimates were

compared with the experimental results.
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The static pressure distributions along the x-axis over the entire plate

surface were measured and shown in the figures along with the static pressures

of the injection air and the wind tunnel.

Schlieren photographs were taken during the tests and Fig. 4 shows two

examples of them. All the experimental results obtained are shown in Fig. 5

through 20 (Test No. 1-4, Rex -4 x 105 1/in.) and in Figs. 21 through 28

(Test No. 5-7, Rex =- 2 x 105 1/in.), including velocity and Mach number pro-

files, heat transfer rates and static pressure distributions.

Test No. 1 corresponds to the case of zero injection. The results

(Figs. 5-8) clearly indicate that a laminar boundary layer exists at least up

to x - 8 in. (x/hj 108) from the leading edge. The static pressure is

almost constant all over the surface along the x-axis (Fig. 8).

The results of small injection air flow (Test No. 2, p =- 0.61 pe) are

shown in Figs. 9 through 12. A comparison of heat transfer measurements with

estimated results shows that transition takes place near x = 6 , 8 in.

(x/hj C 82 , 108). The value of Ree was 940 in this case.

Figures 13 through 16 show the results of Test No. 3, corresponding

to an increased rate of injection mass flow with Ree= 1100. In this case,

the static pressure of injection air was slightly lower than the outer stream

pressure (pj = 0.83 pe), and the boundary layer at x = 7 , 8 in. (x/h = 95 , 108)

was turbulent.

The results of higher injection mass flow which corresponds to Test No. 4

(pj - 1.05 pe) are shown in Figs. 17 through 20. This test corresponds to Reg=1500.

For these conditions, the boundary layer at x - 8 in. (x/h - 108) was found to be

also turbulent and similar to Test No. 3.
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Additional tests were conducted at lower wind tunnel total pressures,

with resulting Reynolds number R of about 2 x 105 1/in.ex

No injection case (Test No. 5, Figs. 21-24) shows a laminar boundary

layer up to x = 8 in. (x/hj - 108). In Test No. 6, only profiles were

measured under the condition of pj = pe and R = 730. The results (Figs. 25

and 26) show also a laminar boundary layer. Heat transfer rates were measured

for Test No. 7, whose results are shown in Figs. 27 and 28. The boundary

layer type is transitional over the surface at x = 6 . 9 in. (x/hj 0-82 122).

The value of R was about 1000.

It can be concluded from these experimental results that the boundary

layer remains laminar behind the slot for the values of Reg approximately less

than 1000, and above this value it is changed from transitional to turbulent

within 100 slot heights under the conditions tested here.

IV. CONCLUSIONS

An experimental investigation of boundary layer tripping by means of

slot injection in a supersonic flow has been performed. The secondary air

was injected through a supersonic nozzle over the flat plate model at nearly

the same stagnation temperature as free stream. The outer stream Mach number

at the slot location (1 in. behind the leading edge) was in the range of

5.43 to 5.83, and Reynolds numbers based on the streamwise distance were about

4 x 105 1/in. and 2 x 105 1/in. depending on the free stream (wind tunnel) total

pressures. Tests were conducted with different conditions of injection air,

resulting in varied values of Re and X. Heat transfer rates were measured at
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about 4 to 8 inches (54 108 slot heights) behind the slot, and the results

were compared with estimates of laminar and turbulent heat transfer on a flat

plate by cited references. Static pressure distributions were obtained over

the surface along the x-axis. Velocity and Mach number profiles were measured

at x = 8 in. (108 slot heights) from the leading edge (7 in. behind the slot).

Laminar and turbulent profiles for the flat plate were estimated by the theo-

retical and semi-empirical methods available and compared with experimental

.results.

From the experimental data obtained here, the following conclusions can

be made.

1. The proposed technique permits us to create a turbulent

boundary layer having a selected value of R at low windee
tunnel Reynolds number without disturbing the outer stream.

Therefore, it permits us to simulate a high Reynolds number

test in a low Reynolds number wind tunnel.

2. The boundary layer with injection remains laminar downstream

of the slot for values of Reg less than 1000. The same

result is obtained for the case of zero injection (R e= 0).

The boundary layer changes rapidly from transitional to

turbulent over the flat plate when Reg passes from 1000

to 1500.
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TABLE I T E S T C O N D I T I O N S

Cest No. Outer Stream at the Slot Injection Air R e Fig. No. of Resu-lts
ee Profiles Heat Transfer

& Pressure

L) P " 167 - 200 psi, R = 3.9 -4.3 x 10 at the slot location
o ex in.

pe= 8.1 nmm Hg
1

T - 7700 R No Injection 0 0 5, 6 7,8
o=

pe = 7.9 mm Hg pj= 4.8 mm Hg

2 T = 745oR T - 6500R 940 0.076 9,10 11, 12
on oJ

pe= 7.1 mm Hg p j 5.9 mm Hg

T = 7320 R T = 7420 R 1100 0.134 13, 14 15, 16

pe = 7 .8 mm Hg p = 8.7 mm Hg

4 T = 768R T = 7780R 1500 0.172 17, 18 19, 20
ow oj

5 1
2) Po = 74 - 83 psi, R = 1.9-2.1 x 10 - at the slot location

ex in.
p e= 5.0 mm Hg

T - 7350R No Injection 0 0 21, 22 23, 24
Om

pe= 4.1 mm Hg p = 4.8 mm Hg

T6 o= 7440 R Toj = 782 0R 730 0.167 25, 26 --

pe = 4.3 mm Hg p j 4.3 mm Hg
7 T = 7360R T = 5660R 1000 0.162 27, 28

Wind Tunnel : M = 5.77 - 5.87, T = 730 - 770 0R

Outer Stream at Slot : M = 5.43 - 5.83
e

Injection Air: M = 1.60 - 1.94
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LOCATION OF
INJECTION SLOT (5" SPAN) PROFILE MEASUREMENT

S1/4" AIR SUPPLY PIPE 0.01" SHIMSTOCK
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ig. 2 Model Configuration
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-PRESSURE TAP
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Fig. 2 Model Configuration
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200 0.25" - 0.02"

hO 0.074"

Mj (DESIGN)= 2.06

+ PRESSURE TAP

Fig. 3 Injection Nozzle Configuration



(i) No Injection Case

(Pow= 210 psi; ReO= 0, 0)

(ii) Injection Case

(Po = 250 psi; Reo 2400, , = 0.218)

Fig. 4 Examples of Schlieren Photographs ORIG
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Fig. 5 Velocity Profile, Test No. 1
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Fig. 17 Velocity Profile, Test No. 4
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Fig. 18 Mach Number Profile, Test No. 4
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Fig. 19 Heat Transfer Distribution, Test No. 4
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Fig. 20 Static Pressure Distribution, Test No. 4
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Fig. 21 Velocity Profile, Test No. 5
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Fig. 22 Mach Number Profile, Test No. 5
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Fig. 23 Heat Transfer Distribution, Test No. 5



P

mm Hg Rex 2.1 x10 5  PER IN.
SLOT To - 0x735 "R

10
NO INJECTION

8 -

6 1-- - -

S- -p (W.T.)

2

T.C.
I I ,,

0 I 2 3 4 5 6 7 8 9

x IN.

Fig. 24 Static Pressure Distribution, Test No. 5
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Fig. 25 Velocity Profile, Test No. 6
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Fig. 26 Mach Number Profile, Test No. 6
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Fig. 27 Heat Transfer Distribution, Test No. 7
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Fig.28 Static Pressure Distribution, Test No. 7


